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COMMENT 

Remark upon a random walk renormalisation 

J S Hoye and M Napibrkowski: 
Institutt for teoretisk fysikk Universitetet i Trondheim, N-7034 Trondheirn-NTH, Norway 

Received 5 October 1979 

Abstract. A direct renormalisation method, previously applied to the self-avoiding random 
walk problem, is shown to give exact results for the one-dimensional random walk problem 
for every choice of the cell size. 

The self-avoiding random walk problem has recently been treated by a non-linear 
renormalisation method (Napibrkowski et a1 1979). The method was based upon a 
direct comparison between walks on the original lattice and walks on a lattice with 
larger lattice constant. Figure 1 shows an example on the triangular lattice, with three 
original sites forming one site on the coarser lattice. 

Figure 1. A walk on two levels for three-spin cells on the triangular lattice. 

The same method can be applied to unrestricted random walks. This problem is 
simple, and there is no need to invoke renormalisation theory. In particular, the index 
v, defined through the average square distance covered by N-step walks, (RL)1’2 - N ” ,  
is i. However, it may be interesting to demonstrate how the method works in a simple 
exactly solvable case. Thus motivated, we consider the one-dimensional random walk 
problem, 

We collect groups of 1 consecutive sites on a linear lattice, called cells, into 
renormalised sites on the transformed lattice, and associate a unique random walk W ’  
with each original walk W by declaring a renormalised site to be visited during W‘ if and 
only if a majority of its 1 sites is visited during W. (When precisely one-half of the sites 
are visited, one requires in addition that an arbitrarily selected site must be contained in 
W in order to have the visit registered. We take the selected site to be the site number 

+ 1) in the cell.) 
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The major simplification in the one-dimensional case is that a nearest-neighbour 
site walk W generates a nearest-neighbour cell walk W’. Thus the renormalisation 
transformation consists merely in determining the renormalised nearest-neighbour 
weight K’ through 

where n ( W )  is the number of steps in W and the sum runs over all the site walks 
compatible with a nearest-neighbour cell step. If this renormalisation transformation 
has a fixed point K” with a relevant eigenvalue A ,  the exponent v is given by 

v = In Illn A. (2) 

In order to evaluate the RHS of (1) one has to consider random walks that start at a 
certain site, called the left-crossed site, and terminate at the corresponding site in the 
neighbouring cell, called the right-crossed site, without visiting corresponding selected 
sites in other cells. The right-crossed site (say) can be visited only once while the rest of 
the allowed sites can be visited an arbitrary number of times. The number of sites that 
can be visited an arbitrary number of times is 21 - 1. 

- / -  

Figure 2. An example of partitions into cells of I = 4. Here p = 7 

To evaluate (1) we introduce two functions f,”,! and g,”,l. The g,”,l is the number of 
different n-step walks that end up 1 units to the right of the starting point such that the 
right endpoint together with p sites to the left of it are all available during the walks. The 
f,”,[ is defined as g;,, with the additional restriction that the right-end site is visited only 
once (i.e. at the final step). Defining the corresponding generating functions 

the sum in equation (1) becomes 

K’ = Fz-I,~ ( K ) .  ( 5 )  

Whenever I = 0 we find it convenient to drop this subscript in equations (3) and (4). 
Likewise we define g: = 1 and fi = 0. From the above definitions one finds that gp” and 
f: are related by 
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which, by use of the generating functions (3) and (4), gives 

I 

G, =I 
1 - F,‘ 

Furthermore, one realises that 

f;z = gp” 

fp”:;,l+l = gp”,1 

or 

Fp+l = K 2 G p  
( 6 e )  

Knowing F1= K 2  one can thus generate all the FP,/ and G,,, by use of these equations. 
Using ( 6 )  we get 

Fp+1,/+1 = KGp,i. 

and for p = 1 = 1 we obtain (defining Go = 1) 

K 2  
F3,2 = ___ 1-2K’’ 

Combining ( 6 b )  and ( 6 e )  we get 

Formulae (7) and (8) can be used as recursion relations to calculate Fp,l. 
Using ( 7 b )  one checks that for 1 = 2 the renormalisation transformation (5) has a 

fixed point K” = i and the relevant eigenvalue A = 1’= 2’. We shall now prove that this 
is a general property of the renormalisation transformation, i.e. for any integer 1 ( I  > 1) 
the transforniation (5) has a fixed point K” = i arid an eigenvalue A = 12. In our proof 
we shall use the following three facts: 

G,* = G,(K*)=2- P + l  
P + 2  
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It is easy to check that the above formulae hold for p = 1 and then using (8) one proves 
by induction that they hold for any p .  Using formulae ( 7 a )  and (10) one checks for 
p =: 21 - 1 that if 

then also 

(13) 

Since property (12) holds for p = 3 and I = 2 we have thus shown that the renor- 
nialisation group equation ( 5 )  has a fixed point K *  = 4. Now we shall show that if 
FL? = 1' then F32,1 ,1  = (1  f 1)2 for p = 21 - 1. Taking the derivative of both sides of 
equation ( 7 a )  and using equations (10)-(13) we obtain €or p = 21 - 1: 

- -  F:+.r,i t i  - i. 

= 1 + 12+3[ (p  + 1) + p  -- ( p  - 01 = (1 + 1)'. 

Thus we have shown by induction that the renormalisation group transformation for the 
one-dimensional random walk with an arbitrary choice of cell size has a fixed point 
M* -- 1 with an eigenvalue equal to the square of the number of sites in one cell. This 
leads to the result that for a random walk Y is equal to i, the well-known exact result. 

Renormalisation of two-dimensional unrestricted random walks should yield 
similar exact results: v = and K, being equal to the inverse coordination number. To 
show this seems to be a much more complicated task and remains a challenge. 

The authors are grateful to Professor P C Hemmer for helpful discussions. 
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